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This paper is concernedwith exploring the global dynamics of SEIR epidemicmodel withmedia impact, which incorporates latency
and relapse delays. The permanence of the model is carefully discussed. By suitable Lyapunov functionals, we establish the global
stability of the equilibria. It is found that the basic reproduction number completely determines the threshold dynamics of the SEIR
model. Finally, the impact of media on the epidemic spread is studied, which reveals that timely response of media and individuals
may play a more key role in disease control.

1. Introduction

The investigation of dynamics of epidemiological models
has been of importance in improving our understanding
of disease control [1–6]. Media education has been an
important control strategy for the emerging and reemerging
epidemics, such as HIV/AIDS [7], SARS [2], Ebola virus
disease (EVD), Middle East Respiratory Syndrome (MERS),
which can not only alert the general public to the hazard
from the infectious diseases but also educate the people about
the requisite preventive measures such as wearing protective
masks, vaccination, voluntary quarantine, and avoidance of
congregated places.The extensive media education will bring
about reducing the frequency and probability of potentially
contagious contacts among the well-informed people [2–4].
In order to describe the impact of media on the diseases,
Cui and his coauthors [3] used the transmission rate of the
form 𝛽 exp(−𝛼𝐼) in SEI model with logistic growth, where
𝛽 is the transmission rate before media alert and 𝐼 denotes
the number of infected individuals. This work provided a
theoretical basis that a Hopf bifurcation can occur for weak
media impact (small values of 𝛼) while the model may have
up to three endemic equilibria for strongmedia impact (large

values of 𝛼). Liu and Cui [4] proposed the transmission rate
taking the form 𝛽 − 𝛽

1
𝐼/(𝑚 + 𝐼) to capture the impact of

media ondisease spread,where𝛽
1

≤ 𝛽 represents the reduced
maximum value of the transmission rate when 𝐼 approaches
infinite and 𝑚 reflects the reactive velocity of media coverage
and individuals to the epidemic disease. For more details
concerning the application of this transmission rate, we refer
the reader to recent works [5, 6].

On the other hand, the individuals infected by infectious
disease may develop symptoms after an incubation period
[8], such as Hepatitis B virus (HBV), Hepatitis C virus
(HCV), the human tuberculosis (TB), and Herpes simplex
virus type 2 (HSV-2). The average latency period after the
genital acquisition of HSV-2 is approximately 4 days [9], and
latent tuberculosis may take months, years, or even decades
to become infectious. Moreover, it has been found clinically
that numerous diseases may make the recovered individuals
suffer from a relapse of symptoms, including HBV [10], HCV
[11], the majority of TB due to incomplete treatment [12],
and genital HSV-2 [13, 14]. Recently, many epidemiological
models incorporating both latency and relapse have been
extensively investigated and many good results have been
obtained (e.g., [15–19]). However, there are few investigation
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on both latency and relapse delays in the epidemiological
models with media impact.

Suppose that the total population 𝑁(𝑡) at time 𝑡 is
divided into four disjoint epidemic subclasses: susceptible
𝑆(𝑡), latent/exposed 𝐸(𝑡), infectious 𝐼(𝑡), and temporarily
recovered 𝑅(𝑡), respectively. And 𝐴 denotes recruitment rate
of susceptible class 𝑆(𝑡), 𝜇 is natural death rate, ] indicates the
death rate due to the disease, and 𝜂 represents the recovered
rate for infectious class 𝐼(𝑡) due to natural recovery or
treatment. As pointed byCui et al. in [5],media can effectively
reduce the contact rates among the population to a limited
level. Hence, it may be more realistic to use the transmission
rate 𝛽 − 𝛽

1
𝐼(𝑡)/(𝑚 + 𝐼(𝑡)) compared to 𝛽 exp(−𝑚𝐼(𝑡)). By

incorporating media impact into the bilinear incidence rate,
we now consider the incidence rate function as follows:

𝑓 (𝑆 (𝑡) , 𝐼 (𝑡)) = (𝛽 −
𝛽
1
𝐼 (𝑡)

𝑚 + 𝐼 (𝑡)
) 𝑆 (𝑡) 𝐼 (𝑡) . (1)

In this work, we assume that the latency and relapse periods
are constants, denoted by 𝜏

1
and 𝜏
2
, respectively. Hence, the

probabilitiesP
1
(𝑡) andP

2
(𝑡) of remaining in the latent class

and the temporarily recovered class are the step-functions
taking the forms

P
𝑖
(𝑡) =

{
{
{

1, 0 ≤ 𝑡 ≤ 𝜏
𝑖
,

0, 𝑡 > 𝜏
𝑖
.

(2)

This suggests that all individuals remain in latent class for
a constant period 𝜏

1
and in temporarily recovered class for

a constant period 𝜏
2
. One further assumes that the disease

has been in the population for at least a time of 𝑡 > 𝜏 fl
max{𝜏

1
, 𝜏
2
}.

Following closely the ideas of [5, 8, 15, 18] and incor-
porating media impact, we consider the following integro-
differential epidemic model with latency and relapse delays:

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝐴 − 𝜇𝑆 (𝑡) − 𝑓 (𝑆 (𝑡) , 𝐼 (𝑡)) ,

𝐸 (𝑡) = ∫
𝑡

𝑡−𝜏
1

𝑒−𝜇(𝑡−𝑟)𝑓 (𝑆 (𝑟) , 𝐼 (𝑟)) 𝑑𝑟,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝑒−𝜇𝜏1𝑓 (𝑆 (𝑡 − 𝜏

1
) , 𝐼 (𝑡 − 𝜏

1
))

− (𝜇 + ] + 𝜂) 𝐼 (𝑡) + 𝜂𝑒−𝜇𝜏2𝐼 (𝑡 − 𝜏
2
) ,

𝑅 (𝑡) = 𝜂 ∫
𝑡

𝑡−𝜏
2

𝑒−𝜇(𝑡−𝑟)𝐼 (𝑟) 𝑑𝑟.

(3)

Differentiating the second and the fourth equations of (3), we
derive the delay model

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝐴 − 𝜇𝑆 (𝑡) − 𝑓 (𝑆 (𝑡) , 𝐼 (𝑡)) ,

𝑑𝐸 (𝑡)

𝑑𝑡
= 𝑓 (𝑆 (𝑡) , 𝐼 (𝑡)) − 𝜇𝐸 (𝑡)

− 𝑒−𝜇𝜏1𝑓 (𝑆 (𝑡 − 𝜏
1
) , 𝐼 (𝑡 − 𝜏

1
)) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝑒−𝜇𝜏1𝑓 (𝑆 (𝑡 − 𝜏

1
) , 𝐼 (𝑡 − 𝜏

1
))

− (𝜇 + ] + 𝜂) 𝐼 (𝑡) + 𝜂𝑒−𝜇𝜏2𝐼 (𝑡 − 𝜏
2
) ,

𝑑𝑅 (𝑡)

𝑑𝑡
= 𝜂𝐼 (𝑡) − 𝜇𝑅 (𝑡) − 𝜂𝑒−𝜇𝜏2𝐼 (𝑡 − 𝜏

2
) ,

(4)

where the term 𝑒−𝜇𝜏1𝑓(𝑆(𝑡 − 𝜏
1
), 𝐼(𝑡 − 𝜏

1
)) indicates the

individuals surviving in the latent period 𝜏
1
and entering

into infectious class at time 𝑡 and the term 𝜂𝑒−𝜇𝜏2𝐼(𝑡 − 𝜏
2
)

represents the individuals surviving in temporarily recovered
period 𝜏

2
and entering into infectious class at time 𝑡. The

initial conditions for model (4) are given by

𝑆 (𝜌) = 𝜑
1

(𝜌) ,

𝐸 (𝜌) = 𝜑
2

(𝜌) ,

𝐼 (𝜌) = 𝜑
3

(𝜌) ,

𝑅 (𝜌) = 𝜑
4

(𝜌) ,

𝜑
𝑖
(𝜌) ≥ 0, 𝜌 ∈ [−𝜏, 0] ,

𝜑
𝑖
(0) > 0, 𝑖 = 1, 2, 3, 4.

(5)

Here, let 𝜑 fl (𝜑
1
, 𝜑
2
, 𝜑
3
, 𝜑
4
)𝑇 ∈ 𝐶, which denotes the Banach

space 𝐶([−𝜏, 0],R4
+0

) of continuous functions mapping the
interval [−𝜏, 0] into R4

+0
, equipped with the uniform norm

defined by ‖𝜑‖ = sup
𝜌∈[−𝜏,0]

|𝜑|, where R4
+0

= {(𝑥
1
, 𝑥
2
, 𝑥
3
,

𝑥
4
): 𝑥
𝑖

≥ 0, 𝑖 = 1, 2, 3, 4}. In consideration of the continuity
of the initial conditions, one requires

𝐸 (0) = ∫
0

−𝜏
1

𝑒𝜇𝜌𝑓 (𝜑
1

(𝜌) , 𝜑
2

(𝜌)) 𝑑𝜌,

𝑅 (0) = 𝜂 ∫
0

−𝜏
2

𝑒𝜇𝜌𝜑
2

(𝜌) 𝑑𝜌.

(6)

Our main aim of this study is concerned with investigat-
ing the global dynamics ofmodel (4) and the impact ofmedia
on the disease spread. The basic structure of this paper is as
follows. In the next section, we study the existence and the
local stability of equilibria of (4). Section 3 carefully addresses
the permanence of (4). In Section 4, global stability analysis of
(4) is carried out. Finally, a discussion section ends this paper.
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2. The Equilibria

2.1. The Existence of Equilibria. Throughout this paper,
denote 𝑘 fl 𝜇 + ] + 𝜂.

Lemma 1. Any solution of model (4) with the initial conditions
(5) and (6) is unique, positive, and bounded on [0, +∞).
Moreover, the biologically feasible region

Ω = {(𝑆, 𝐸, 𝐼, 𝑅) ∈ R
4

+
: 𝑆 + 𝐸 + 𝐼 + 𝑅 ≤

𝐴

𝜇
} (7)

is a positive invariant with respect to (4).

Proof. From the fundamental theory of functional differen-
tial equations [20], (4) admits a unique solution (𝑆(𝑡), 𝐸(𝑡),

𝐼(𝑡), 𝑅(𝑡))𝑇 satisfying the initial conditions (5) and (6).
Firstly, one shows that the solution 𝑆(𝑡) is positive, ∀𝑡 ≥

0. If not, we assign 𝑡
1

> 0 to be the first time such that 𝑆(𝑡
1
) =

0, which implies that 𝑆(𝑡) > 0 for 𝑡 ∈ [0, 𝑡
1
). Thus, we must

have 𝑑𝑆(𝑡
1
)/𝑑𝑡 = 𝐴 > 0 from the first equation of (4). Then

there is a sufficiently small constant 𝜖 > 0 such that 𝑆(𝑡) < 0
holds for 𝑡 ∈ (𝑡

1
− 𝜖, 𝑡
1
). This leads to a contradiction. So

𝑆(𝑡) > 0 for 𝑡 ≥ 0. Secondly, 𝐼(𝑡) > 0 also holds ∀𝑡 ≥ 0.
In fact, if 𝐼(𝑡) would lose its positivity and 𝑡

2
> 0 were the

first time such that 𝐼(𝑡
2
) = 0, then 𝐼(𝑡) > 0 for 𝑡 ∈ [0, 𝑡

2
).

Solving the third equation of (4) on [0, 𝑡
2
] gives

𝐼 (𝑡
2
) = 𝑒−𝑘𝑡2 {𝐼 (0)

+ ∫
𝑡
2

0

[𝑒−𝜇𝜏1𝑓 (𝑆 (𝑟 − 𝜏
1
) , 𝐼 (𝑟 − 𝜏

1
))

+ 𝜂𝑒−𝜇𝜏2𝐼 (𝑟 − 𝜏
2
)] 𝑒𝑘𝑟𝑑𝑟} .

(8)

Due to 𝑆(𝜌), 𝐼(𝜌) > 0 ∀𝜌 ∈ [0, 𝑡
2
), the right hand side of

the above equality is positive, which yields that 𝐼(𝑡
2
) > 0,

contracting to 𝐼(𝑡
2
) = 0.Thirdly, since the second equation of

(4) is equivalent to the second equation of (3) and 𝑆(𝑡), 𝐼(𝑡) >
0, it follows from the second equation of (3) that𝐸(𝑡) > 0 ∀𝑡 ≥
0. Similarly, we can obtain that𝑅(𝑡) > 0 ∀𝑡 ≥ 0.The positivity
of solutions is proved.

Finally, the boundedness of the solutions is shown. Since
𝑑𝑁(𝑡)/𝑑𝑡 = 𝐴 − 𝜇𝑁(𝑡) − ]𝐼(𝑡) ≤ 𝐴 − 𝜇𝑁(𝑡), we get that
lim sup

𝑡→∞
𝑁(𝑡) ≤ 𝐴/𝜇. This suggests that 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡),

𝑅(𝑡) are bounded on [0, +∞). Hence, the feasible region Ω is
a positive invariance that attracts all solutions of (4) in R4

+
.

The proof is completed.

Theorem 2. Model (4) admits a unique endemic equilibrium
(EE) 𝐸∗(𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗) if R

0
> 1, and there always exists a

disease-free equilibrium (DFE) 𝐸
0
(𝑆
0
, 0, 0, 0).

Proof. Model (4) always has a disease-free equilibrium 𝐸
0

=
(𝑆
0
, 0, 0, 0), where 𝑆

0
= 𝐴/𝜇. Applying the theory of the next

generation matrix in [21], we derive that

R
0

=
𝜕𝑓 (𝑆
0
, 0)

𝜕𝐼

𝑒−𝜇𝜏1

𝑘 − 𝜂𝑒−𝜇𝜏2
=

𝑒−𝜇𝜏1𝛽𝐴

𝜇 (𝜇 + ] + 𝜂 − 𝜂𝑒−𝜇𝜏2)
(9)

is the basic reproduction number of (4), which stands for the
average number of new infections brought out by a typical
infectious individual during the whole infectious period [22].

Let (𝑆, 𝐸, 𝐼, 𝑅) be any positive equilibrium (if it exists),
then

𝐴 − 𝜇𝑆 − 𝑓 (𝑆, 𝐼) = 0,

𝑓 (𝑆, 𝐼) − 𝜇𝐸 − 𝑒−𝜇𝜏1𝑓 (𝑆, 𝐼) = 0,

𝑒−𝜇𝜏1𝑓 (𝑆, 𝐼) − 𝑘𝐼 + 𝜂𝑒−𝜇𝜏2𝐼 = 0,

𝜂𝐼 − 𝜇𝑅 − 𝜂𝑒−𝜇𝜏2𝐼 = 0.

(10)

Solving the second and the fourth equations of (10) yields that

𝐸 =
(1 − 𝑒−𝜇𝜏1)

𝜇
𝑓 (𝑆, 𝐼) ,

𝑅 =
𝜂 (1 − 𝑒−𝜇𝜏2)

𝜇
𝐼.

(11)

From the first and the third equations of (10), eliminating
𝑓(𝑆, 𝐼) leads to

𝑆 =
1

𝜇
[𝐴 − 𝑒𝜇𝜏1 (𝑘 − 𝜂𝑒−𝜇𝜏2) 𝐼] . (12)

Denote 𝑎 = 𝑒𝜇𝜏1(𝑘 − 𝜂𝑒−𝜇𝜏2). Because of 𝑆 = (𝐴 − 𝑎𝐼)/𝜇 > 0,
one has 𝐼 < 𝐴/𝑎. Now, one turns to studying the following
equation:

𝜙 (𝐼) fl 𝑓 (
𝐴 − 𝑎𝐼

𝜇
, 𝐼) − 𝑎𝐼 = 0, 𝐼 ∈ [0,

𝐴

𝑎
] . (13)

By𝑓(𝑆, 0) = 𝑓(0, 𝐼) = 0, we get that 𝜙(0) = 0, 𝜙(𝐴/𝑎) = −𝐴 <
0. Applying 𝜕𝑓(𝑆

0
, 0)/𝜕𝑆 = 0 gives

𝜙 (0) = −
𝑎

𝜇
⋅

𝜕𝑓 (𝑆
0
, 0)

𝜕𝑆
+

𝜕𝑓 (𝑆
0
, 0)

𝜕𝐼
− 𝑎

= 𝑎 (R
0

− 1) > 0,

(14)

whence one obtains𝜙(𝐼) > 0whenR
0

> 1 and 𝐼 is sufficiently
small. One thus deduces that (13) admits a positive real root,
denoted by 𝐼∗.This also suggests thatmodel (4) at least admits
positive equilibrium 𝐸∗(𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗) from (11).

In fact, 𝐸∗ is proved to be a unique EE. From (13), it
follows that 𝑎 = 𝑓(𝑆∗, 𝐼∗)/𝐼∗. Due to 𝛽 ≥ 𝛽

1
, we can examine

that 𝜕𝑓(𝑆∗, 𝐼∗)/𝜕𝑆 > 0 and

𝜕𝑓 (𝑆∗, 𝐼∗)

𝜕𝐼
= (𝛽 −

𝛽
1
𝐼∗

𝑚 + 𝐼∗
2𝑚 + 𝐼∗

𝑚 + 𝐼∗
) 𝑆∗

< (𝛽 −
𝛽
1
𝐼∗

𝑚 + 𝐼∗
) 𝑆∗ =

𝑓 (𝑆∗, 𝐼∗)

𝐼∗
,

(15)

which leads to

𝜙 (𝐼∗) = −
𝑎

𝜇

𝜕𝑓 (𝑆∗, 𝐼∗)

𝜕𝑆
+

𝜕𝑓 (𝑆∗, 𝐼∗)

𝜕𝐼
− 𝑎

= −
𝑎

𝜇

𝜕𝑓 (𝑆∗, 𝐼∗)

𝜕𝑆
+

𝜕𝑓 (𝑆∗, 𝐼∗)

𝜕𝐼
−

𝑓 (𝑆∗, 𝐼∗)

𝐼∗

< 0,

(16)
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which implies that 𝜙(𝐼) strictly decreases at any positive
equilibrium 𝐸∗. Note that 𝜙(𝐼) is continuously differentiable
on [0, 𝐴/𝑎]. Assume that (13) has more than one positive
root; then there must exist certain one positive equilibrium
𝐸+(𝑆+, 𝐸+, 𝐼+, 𝑅+) such that 𝜙(𝐼+) ≥ 0, resulting in a
contraction. Thus, 𝐼∗ is unique and so is 𝐸∗ ifR

0
> 1.

2.2.TheLocal Stability of Equilibria. In the following sections,
one uses the notations 𝑋 = 𝑋(𝑡) and 𝑋

𝜏
𝑖

= 𝑋(𝑡 − 𝜏
𝑖
), 𝑖 = 1, 2.

Theorem3. Formodel (4), theDFE𝐸
0
is locally asymptotically

stable ifR
0

< 1 but unstable ifR
0

> 1. Moreover, the EE 𝐸∗ is
locally asymptotically stable ifR

0
> 1.

Proof. The characteristic equation of model (4) at some
equilibrium is calculated as



− (𝜆 + 𝜇 +
𝜕𝑓

𝜕𝑆
) 0 −

𝜕𝑓

𝜕𝐼
0

(1 − 𝑒−(𝜆+𝜇)𝜏1)
𝜕𝑓

𝜕𝑆
− (𝜆 + 𝜇) (1 − 𝑒−(𝜆+𝜇)𝜏1)

𝜕𝑓

𝜕𝐼
0

𝑒−(𝜆+𝜇)𝜏1
𝜕𝑓

𝜕𝑆
0 𝜋 0

0 0 𝜂 − 𝜂𝑒−(𝜆+𝜇)𝜏2 − (𝜆 + 𝜇)



= 0,

(17)

where 𝜋 fl −𝜆 − 𝑘 + 𝑒−(𝜆+𝜇)𝜏1𝜕𝑓/𝜕𝐼 + 𝜂𝑒−(𝜆+𝜇)𝜏2 .
(1) By 𝜕𝑓(𝑆

0
, 0)/𝜕𝑆 = 0, evaluating (17) at 𝐸

0
(𝑆
0
, 0, 0, 0)

yields

(𝜆 + 𝜇)
3

(𝜆 + 𝑘 − 𝑒−(𝜆+𝜇)𝜏1
𝜕𝑓 (𝑆
0
, 0)

𝜕𝐼
− 𝜂𝑒−(𝜆+𝜇)𝜏2)

= 0.

(18)

Clearly, an eigenvalue of (18) is 𝜆
1

= −𝜇 < 0, and the
remaining ones satisfy

𝜓 (𝜆) fl 𝜆 + 𝑘 − 𝑒−(𝜆+𝜇)𝜏1
𝜕𝑓 (𝑆
0
, 0)

𝜕𝐼
− 𝜂𝑒−(𝜆+𝜇)𝜏2 = 0. (19)

Suppose thatR
0

> 1. From (19), we directly get

𝜓 (0) = 𝑘 − 𝑒−𝜇𝜏1
𝜕𝑓 (𝑆
0
, 0)

𝜕𝐼
− 𝜂𝑒−𝜇𝜏2 < 0,

𝜓 (+∞) = +∞,

(20)

which means that (19) has at least one positive root. That is,
𝐸
0
is unstable ifR

0
> 1. Suppose thatR

0
< 1. Assign

Ψ (𝜆) fl
𝜕𝑓 (𝑆
0
, 0)

𝜕𝐼

𝑒−(𝜆+𝜇)𝜏1

𝜆 + 𝑘 − 𝜂𝑒−(𝜆+𝜇)𝜏2
. (21)

Using (19) yields Ψ(𝜆) = 1. Let 𝜆 = 𝑥 + 𝑦𝑖 (𝑥, 𝑦 ∈ R) be any
root of (19). If 𝑥 ≥ 0, one has

|Ψ (𝜆)| =
𝜕𝑓 (𝑆
0
, 0)

𝜕𝐼

𝑒
−(𝜆+𝜇)𝜏

1


𝜆 + 𝑘 − 𝜂𝑒−(𝜆+𝜇)𝜏2


≤
𝜕𝑓 (𝑆
0
, 0)

𝜕𝐼

𝑒−𝜇𝜏1
𝑒
−𝑥𝜏
1


𝑥 + 𝑘 − 𝜂𝑒−𝜇𝜏2𝑒−𝑥𝜏2


≤
𝜕𝑓 (𝑆
0
, 0)

𝜕𝐼

𝑒−𝜇𝜏1
𝑘 − 𝜂𝑒−𝜇𝜏2


= R
0

< 1,

(22)

contradicting with (21), and thus 𝑥 < 0. So 𝐸
0
is locally

asymptotically stable ifR
0

< 1.
(2) From (17), the characteristic equation of model (4) at

𝐸∗(𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗) reads

(𝜆 + 𝜇)
2

[(𝜆 + 𝜇 +
𝜕𝑓 (𝑆∗, 𝐼∗)

𝜕𝑆
)

⋅ (𝜆 + 𝑘 −
𝜕𝑓 (𝑆∗, 𝐼∗)

𝜕𝐼
𝑒−(𝜆+𝜇)𝜏1 − 𝜂𝑒−(𝜆+𝜇)𝜏2)

+
𝜕𝑓 (𝑆∗, 𝐼∗)

𝜕𝑆

𝜕𝑓 (𝑆∗, 𝐼∗)

𝜕𝐼
𝑒−(𝜆+𝜇)𝜏1] = 0.

(23)

Apparently, 𝜆
1

= −𝜇 < 0 is an eigenvalue of (23). Further-
more, assume that (23) has another root 𝜆

2
with Re𝜆

2
≥ 0,

and then

𝜆
2

+ 𝑘 =
𝜕𝑓 (𝑆∗, 𝐼∗)

𝜕𝐼

(𝜆
2

+ 𝜇) 𝑒−(𝜆2+𝜇)𝜏1

𝜆
2

+ 𝜇 + 𝜕𝑓 (𝑆∗, 𝐼∗) /𝜕𝑆

+ 𝜂𝑒−(𝜆2+𝜇)𝜏2 .

(24)

From (15) and 𝑒−𝜇𝜏1𝑓(𝑆∗, 𝐼∗)+𝜂𝑒−𝜇𝜏2𝐼∗ = 𝑘𝐼∗, we can deduce
that



𝜕𝑓 (𝑆∗, 𝐼∗)

𝜕𝐼

(𝜆
2

+ 𝜇) 𝑒−(𝜆2+𝜇)𝜏1

𝜆
2

+ 𝜇 + 𝜕𝑓 (𝑆∗, 𝐼∗) /𝜕𝑆
+ 𝜂𝑒−(𝜆2+𝜇)𝜏2



≤



𝜕𝑓 (𝑆∗, 𝐼∗)

𝜕𝐼

(𝜆
2

+ 𝜇) 𝑒−(𝜆2+𝜇)𝜏1

𝜆
2

+ 𝜇 + 𝜕𝑓 (𝑆∗, 𝐼∗) /𝜕𝑆



+
𝜂𝑒−(𝜆2+𝜇)𝜏2

 < 𝑒−𝜇𝜏1
𝜕𝑓 (𝑆∗, 𝐼∗)

𝜕𝐼
+ 𝜂𝑒−𝜇𝜏2

≤ 𝑒−𝜇𝜏1
𝑓 (𝑆∗, 𝐼∗)

𝐼∗
+ 𝜂𝑒−𝜇𝜏2 = 𝑘.

(25)

Recall that the left side of (24) satisfies |𝜆
2

+ 𝑘| ≥ 𝑘. This
contradicts with (24). It follows from Theorem 9.17.4 in [23]
that (23) does not admit any root with a nonnegative real
part. So 𝐸∗ is locally asymptotically stable if R

0
> 1. This

completes the proof.

3. Permanence

In order to study the permanence of model (4), we first
discuss its uniform persistence when R

0
> 1 by the

persistence theory for infinite dimensional systems [24].
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Definition 4. Denote
∘

Ω as the interior of Ω. If there is a
constant  > 0 independent of initial values in

∘

Ω, such that
lim inf

𝑡→∞
𝑆 ≥ , lim inf

𝑡→∞
𝐸 ≥ , lim inf

𝑡→∞
𝐼 ≥ , and

lim inf
𝑡→∞

𝑅 ≥ , then model (4) is uniformly persistent in
∘

Ω.

In the sequel, some notations and terminology are intro-
duced. Denote Φ(𝑡), 𝑡 ≥ 0, as the family of solution
operators with respect to (4). Consider 𝑌 ∈ 𝐶 with the
uniform norm ‖𝜑‖. Let us define the 𝜔-limit set as 𝜔(𝑦) fl
{𝑧 ∈ 𝑌 | there is a sequence 𝑡

𝑛
→ ∞ as 𝑛 →

∞ with lim
𝑛→∞

Φ(𝑡
𝑛
)𝑦 = 𝑧}.The semigroupΦ(𝑡) is referred

to as being asymptotically smooth, if for any bounded subset
U of 𝑌, for which Φ(𝑡)U ⊂ 𝑈 ∀𝑡 ≥ 0, there is a compact set
A such that 𝑑(Φ(𝑡)U,A) → 0 as 𝑡 → ∞. Set

𝑌0 = {𝜑 ∈ 𝑌, 𝜑
𝑖
(𝜌) > 0, 𝜌 ∈ [−𝜏, 0] , 𝑖 = 2, 3, 4} ,

𝑌
0

= {𝜑 ∈ 𝑌, 𝜑
2

(𝜌) = 0, or 𝜑
3

(𝜌) = 0, or 𝜑
4

(𝜌)

= 0, 𝜌 ∈ [−𝜏, 0]} .

(26)

It can be seen that 𝑌
0

= 𝑌/𝑌0 = 𝜕𝑌, where 𝜕𝑌 represents the
boundary of 𝑌.

Lemma 5 (see [24], Theorem 4.2). Let the following condi-
tions be satisfied:

(i) 𝑌0 is open and dense in 𝑌 with 𝑌0 ∪ 𝑌
0

= 𝑌 and 𝑌0 ∩
𝑌
0

= Ø.

(ii) The solution operators Φ(𝑡) satisfy Φ(𝑡) : 𝑌0 → 𝑌0,
Φ(𝑡) : 𝑌

0
→ 𝑌
0
.

(iii) Φ(𝑡) is point dissipative in 𝑌.

(iv) 𝛾+(U) is bounded in 𝑌 ifU is bounded in 𝑌.

(v) Φ(𝑡) is asymptotically smooth.

(vi) B = ∪
𝑦∈B
𝑏

𝜔(𝑦) is isolated and has an acyclic covering
M, where B

𝑏
is the global attractor of 𝑇(𝑡) restricted

to 𝑌
0
andM = ∪

𝑗

𝑖=1
M
𝑖
, 𝑖 = 1, 2, . . . , 𝑗.

(vii) ∀M
𝑖
∈ M, 𝑊𝑠(M

𝑖
) ∩ 𝑌0 = 0 holds, where 𝑊𝑠 denotes

the stable set.

Then Φ(𝑡) is a uniform repeller with respect to 𝑌0; that
is, there exists a constant  > 0 such that, ∀𝑦 ∈ 𝑌0,
lim inf

𝑡→∞
𝑑(Φ(𝑡)𝑦, 𝑌

0
) ≥ .

Theorem 6. Model (4) is permanent provided thatR
0

> 1.

Proof. From (26), one examines that (i) and (ii) clearly hold.
And (iii)-(iv) immediately follow from Lemma 1. It is seen
that B = {�̃�

0
} (here, �̃�

0
fl (𝑆
0
, 0, 0, 0)) is isolated, which

implies that the covering is simply M = {�̃�
0
}. Since no orbit

connects �̃�
0
to itself in 𝑌

0
, we have that M is acyclic. Thus,

(vi) is checked out.

Now, we prove that 𝑊𝑠(�̃�
0
) ∩ 𝑌0 = 0, where 𝑊𝑠(�̃�

0
) =

{𝑦 ∈ 𝑌0 : lim
𝑡→∞

Φ(𝑡)𝑦 = �̃�
0
}. Assume by contradiction that

there is a solution 𝑦 = (𝑆, 𝐸, 𝐼, 𝑅) ∈ 𝑊𝑠(�̃�
0
) ∩ 𝑌0, such that

lim
𝑡→∞

𝑆 = 𝑆
0
,

lim
𝑡→∞

𝐸 = 0,

lim
𝑡→∞

𝐼 = 0,

lim
𝑡→∞

𝑅 = 0.

(27)

From Lemma 1, we know that 𝑆, 𝐼 > 0 for 𝑡 ≥ 0. Choose a
Lyapunov function

𝑈 (𝑡) = 𝑒𝜇𝜏1𝐼 + ∫
𝑡

𝑡−𝜏
1

𝑓 (𝑆 (𝜎) , 𝐼 (𝜎)) 𝑑𝜎

+ 𝜂𝑒𝜇(𝜏1−𝜏2) ∫
𝑡

𝑡−𝜏
2

𝐼 (𝜎) 𝑑𝜎.

(28)

From (27), it follows that there exists𝑇
0

> 0 such that𝑈(𝑇
0
) >

0. And the time derivative of 𝑈(𝑡) along the solutions of (4)
reads

𝑑𝑈 (𝑡)

𝑑𝑡
= 𝑒𝜇𝜏1 [𝑒−𝜇𝜏1𝑓 (𝑆

𝜏
1

, 𝐼
𝜏
1

) − 𝑘𝐼 + 𝜂𝑒−𝜇𝜏2𝐼
𝜏
2

]

+ [𝑓 (𝑆, 𝐼) − 𝑓 (𝑆
𝜏
1

, 𝐼
𝜏
1

)]

+ 𝜂𝑒𝜇(𝜏1−𝜏2) (𝐼 − 𝐼
𝜏
2

)

= 𝑓 (𝑆
𝜏
1

, 𝐼
𝜏
1

) − 𝑒𝜇𝜏1𝑘𝐼 + 𝜂𝑒𝜇(𝜏1−𝜏2)𝐼
𝜏
2

+ 𝑓 (𝑆, 𝐼)

− 𝑓 (𝑆
𝜏
1

, 𝐼
𝜏
1

) + 𝜂𝑒𝜇(𝜏1−𝜏2)𝐼 − 𝜂𝑒𝜇(𝜏1−𝜏2)𝐼
𝜏
2

= [
𝑓 (𝑆, 𝐼)

𝐼
− 𝑒𝜇𝜏1 (𝑘 − 𝜂𝑒−𝜇𝜏2)] 𝐼.

(29)

By (27), we can use L’Hospital’s rule, yielding

lim
𝑡→∞

𝑓 (𝑆, 𝐼)

𝐼
=

𝜕𝑓 (𝑆
0
, 0)

𝜕𝐼
. (30)

If R
0

> 1, by (9), then the function 𝑈(𝑡) is not decreasing
when 𝑡 is large enough. For the given above 𝑇

0
, one thus

gets 𝑈(𝑡) ≥ 𝑈(𝑇
0
) for 𝑡 ≥ 𝑇

0
. Note that 𝑈(𝑇

0
) > 0

prevents (𝐸, 𝐼, 𝑅) from converging to (0, 0, 0) as 𝑡 → ∞,
This contradicts to 𝑆 → 𝑆

0
. For the dissipative system (4),

uniform persistence is equivalent to permanence, completing
the proof.

In an epidemiological sense, uniform persistence of
model (4) implies that there are always infectious individuals
if the disease is initially present andR

0
> 1.

4. Global Stability

We are now in a position to study the global asymptotic
behaviors of model (4).
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Theorem7. TheDFE𝐸
0
ofmodel (4) is globally asymptotically

stable in Ω ifR
0

≤ 1.

Proof. We still consider the Lyapunov function 𝑈(𝑡) defined
in (29). Since 𝑓(𝑆

0
, 𝐼)/𝐼 decreases with 𝐼 and 𝑆 ≤ 𝑆

0
, applying

L’Hospital’s rule one obtains that

𝑓 (𝑆, 𝐼)

𝐼
≤

𝑓 (𝑆
0
, 𝐼)

𝐼
≤ lim
𝐼→0
+

𝑓 (𝑆
0
, 𝐼)

𝐼
=

𝜕𝑓 (𝑆
0
, 0)

𝜕𝐼
(31)

holds ∀𝑆, 𝐼 > 0. From (29), the derivative of 𝑈(𝑡) along the
solutions of (4) reads

𝑑𝑈 (𝑡)

𝑑𝑡
= [

𝑓 (𝑆, 𝐼)

𝐼
− 𝑒𝜇𝜏1 (𝑘 − 𝜂𝑒−𝜇𝜏2)] 𝐼

≤ [
𝜕𝑓 (𝑆
0
, 0)

𝜕𝐼
− 𝑒𝜇𝜏1 (𝑘 − 𝜂𝑒−𝜇𝜏2)] 𝐼

= 𝑒𝜇𝜏1 (𝑘 − 𝜂𝑒−𝜇𝜏2) (R
0

− 1) 𝐼 ≤ 0

(32)

if R
0

≤ 1. Hence, when R
0

≤ 1, there is a singleton
{𝐸
0
}, as the maximal compact invariant set in {(𝑆, 𝐸, 𝐼, 𝑅) ∈

Ω : 𝑑𝑈(𝑡)/𝑑𝑡 = 0}. Applying LaSalle’s invariance principle
immediately leads to the global asymptotic stability of 𝐸

0
in

Ω, completing the proof.

Let us introduce the well-known Volterra-type function,
H(𝑥) = 𝑥−1−ln𝑥,𝑥 > 0. Obviously,H(𝑥) is positive-defined
and reaches the global minimum at 𝑥 = 1 withH(1) = 0.

Theorem 8. The EE 𝐸∗ of model (4) is globally asymptotically
stable in

∘

Ω ifR
0

> 1.

Observe that the variables 𝐸 and 𝑅 in model (4) do not
appear in the following subsystem:

𝑑𝑆

𝑑𝑡
= 𝐴 − 𝜇𝑆 − 𝑓 (𝑆, 𝐼) ,

𝑑𝐼

𝑑𝑡
= 𝑒−𝜇𝜏1𝑓 (𝑆

𝜏
1

, 𝐼
𝜏
1

) − 𝑘𝐼 + 𝜂𝑒−𝜇𝜏2𝐼
𝜏
2

.

(33)

From Lemma 1 and Theorems 2, 3, and 6, one can derive the
uniqueness, positivity, and boundedness of the solutions of
(33). The region Π = {(𝑆, 𝐼) ∈ R2

+
: 𝑆 + 𝐼 ≤ 𝐴/𝜇} is a

positive invariant with (33) and denoting its interior by
∘

Π.
Furthermore, (33) has a locally asymptotically stable trivial
equilibrium 𝜀

0
= (𝑆
0
, 0) if R

0
< 1, and it is unstable if

R
0

> 1. There exists one unique locally asymptotically stable
nontrivial equilibrium 𝜀∗(𝑆∗, 𝐼∗) if R

0
> 1. Subsystem (33)

is permanent when R
0

> 1. In order to prove Theorem 8,
we first explore the global stability of 𝜀∗ of (33) based on its
permanence.

Lemma9. Theequilibrium 𝜀∗ of (33) is globally asymptotically
stable in

∘

Π ifR
0

> 1.

Proof. Construct the following Lyapunov function 𝑉(𝑡) =
𝑊
1
(𝑡) + 𝑊

2
(𝑡) + 𝑊

3
(𝑡), where

𝑊
1

(𝑡) = ∫
𝑆

𝑆
∗

(1 −
𝑓 (𝑆∗, 𝐼∗)

𝑓 (𝜎, 𝐼∗)
) 𝑑𝜎 + 𝑒𝜇𝜏1𝐼∗H(

𝐼

𝐼∗
) ,

𝑊
2

(𝑡) = 𝑓 (𝑆∗, 𝐼∗) ∫
𝑡

𝑡−𝜏
1

H(
𝑓 (𝑆 (𝜎) , 𝐼 (𝜎))

𝑓 (𝑆∗, 𝐼∗)
) 𝑑𝜎,

𝑊
3

(𝑡) = 𝜂𝑒𝜇(𝜏1−𝜏2)𝐼∗ ∫
𝑡

𝑡−𝜏
2

H(
𝐼 (𝜎)

𝐼∗
) 𝑑𝜎.

(34)

It follows from Theorem 6 that the variables 𝑆 and 𝐼 are
sufficiently bounded and bounded away from 0. This ensures
the boundedness of 𝑉(𝑡) for 𝑡 ≥ 0, and thus 𝑉(𝑡) is well
defined. Together with the properties of H(𝑥), we find that
𝑉(𝑡) ≥ 0with global minimum 0 at 𝜀∗. By𝐴 = 𝑓(𝑆∗, 𝐼∗)+𝜇𝑆∗

and 𝑘 = 𝑒−𝜇𝜏1𝑓(𝑆∗, 𝐼∗)/𝐼∗+𝜂𝑒−𝜇𝜏2 , differentiating𝑊
1
(𝑡) along

the solutions of (33) yields

𝑑𝑊
1

(𝑡)

𝑑𝑡
= (1 −

𝑓 (𝑆∗, 𝐼∗)

𝑓 (𝑆, 𝐼∗)
) [𝜇𝑆∗ (1 −

𝑆

𝑆∗
)

+ 𝑓 (𝑆∗, 𝐼∗) − 𝑓 (𝑆, 𝐼)] + (1 −
𝐼∗

𝐼
) [𝑓 (𝑆

𝜏
1

, 𝐼
𝜏
1

)

− 𝑓 (𝑆∗, 𝐼∗)
𝐼

𝐼∗
− 𝜂𝑒𝜇(𝜏1−𝜏2) (𝐼 − 𝐼

𝜏
2

)] = 𝜇𝑆∗ (1

−
𝑆

𝑆∗
) (1 −

𝑓 (𝑆∗, 𝐼∗)

𝑓 (𝑆, 𝐼∗)
) − 𝑓 (𝑆, 𝐼) + 𝑓 (𝑆∗, 𝐼∗) (1

−
𝑓 (𝑆∗, 𝐼∗)

𝑓 (𝑆, 𝐼∗)
+

𝑓 (𝑆, 𝐼)

𝑓 (𝑆, 𝐼∗)
) + 𝑓 (𝑆

𝜏
1

, 𝐼
𝜏
1

)

− 𝑓 (𝑆
𝜏
1

, 𝐼
𝜏
1

)
𝐼∗

𝐼
+ 𝑓 (𝑆∗, 𝐼∗) (1 −

𝐼

𝐼∗
)

− 𝜂𝑒𝜇(𝜏1−𝜏2) (𝐼 − 𝐼
𝜏
2

) + 𝜂𝑒𝜇(𝜏1−𝜏2)𝐼∗ (1 −
𝐼
𝜏
2

𝐼
) .

(35)

And the time derivatives of 𝑊
2
(𝑡) and 𝑊

3
(𝑡) along the

solutions of (4), respectively, read

𝑑𝑊
2

(𝑡)

𝑑𝑡

= 𝑓 (𝑆∗, 𝐼∗) [H(
𝑓 (𝑆, 𝐼)

𝑓 (𝑆∗, 𝐼∗)
) − H(

𝑓 (𝑆
𝜏
1

, 𝐼
𝜏
1

)

𝑓 (𝑆∗, 𝐼∗)
)]

= 𝑓 (𝑆, 𝐼) − 𝑓 (𝑆
𝜏
1

, 𝐼
𝜏
1

) + 𝑓 (𝑆∗, 𝐼∗) ln
𝑓 (𝑆
𝜏
1

, 𝐼
𝜏
1

)

𝑓 (𝑆, 𝐼)
,

𝑑𝑊
3

(𝑡)

𝑑𝑡
= 𝜂𝑒𝜇(𝜏1−𝜏2)𝐼∗ [H(

𝐼

𝐼∗
) − H(

𝐼
𝜏
2

𝐼∗
)]

= 𝜂𝑒𝜇(𝜏1−𝜏2) (𝐼 − 𝐼
𝜏
2

) + 𝜂𝑒𝜇(𝜏1−𝜏2)𝐼∗ ln
𝐼
𝜏
2

𝐼
.

(36)
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From (35)-(36), we therefore have

𝑑𝑉 (𝑡)

𝑑𝑡
=

𝑑𝑊
1

(𝑡)

𝑑𝑡
+

𝑑𝑊
2

(𝑡)

𝑑𝑡
+

𝑑𝑊
3

(𝑡)

𝑑𝑡

= 𝜇𝑆∗ (2 −
𝑆

𝑆∗
−

𝑆∗

𝑆
)

+ 𝜂𝑒𝜇(𝜏1−𝜏2)𝐼∗ (1 −
𝐼
𝜏
2

𝐼
+ ln

𝐼
𝜏
2

𝐼
) + 𝑓 (𝑆∗, 𝐼∗)

⋅ (1 −
𝑓 (𝑆∗, 𝐼∗)

𝑓 (𝑆, 𝐼∗)
+

𝑓 (𝑆, 𝐼)

𝑓 (𝑆, 𝐼∗)
) + 𝑓 (𝑆∗, 𝐼∗)

⋅ (1 −
𝐼

𝐼∗
−

𝐼∗𝑓 (𝑆
𝜏
1

, 𝐼
𝜏
1

)

𝐼𝑓 (𝑆∗, 𝐼∗)
+ ln

𝑓 (𝑆
𝜏
1

, 𝐼
𝜏
1

)

𝑓 (𝑆, 𝐼)
) .

(37)

Note that

ln
𝑓 (𝑆
𝜏
1

, 𝐼
𝜏
1

)

𝑓 (𝑆, 𝐼)
= ln

𝑓 (𝑆∗, 𝐼∗)

𝑓 (𝑆, 𝐼∗)
+ ln

𝐼∗𝑓 (𝑆
𝜏
1

, 𝐼
𝜏
1

)

𝐼𝑓 (𝑆∗, 𝐼∗)

+ ln
𝐼𝑓 (𝑆, 𝐼∗)

𝐼∗𝑓 (𝑆, 𝐼)
.

(38)

Further, it can be found that

𝑑𝑉 (𝑡)

𝑑𝑡
= 𝜇𝑆∗ (2 −

𝑆

𝑆∗
−

𝑆∗

𝑆
) − 𝜂𝑒𝜇(𝜏1−𝜏2)𝐼∗H(

𝐼
𝜏
2

𝐼
)

+ 𝑓 (𝑆∗, 𝐼∗) (1 −
𝑓 (𝑆∗, 𝐼∗)

𝑓 (𝑆, 𝐼∗)
+ ln

𝑓 (𝑆∗, 𝐼∗)

𝑓 (𝑆, 𝐼∗)
)

+ 𝑓 (𝑆∗, 𝐼∗) (1 −
𝐼∗𝑓 (𝑆

𝜏
1

, 𝐼
𝜏
1

)

𝐼𝑓 (𝑆∗, 𝐼∗)

+ ln
𝐼∗𝑓 (𝑆

𝜏
1

, 𝐼
𝜏
1

)

𝐼𝑓 (𝑆∗, 𝐼∗)
) + 𝑓 (𝑆∗, 𝐼∗) (1 −

𝐼𝑓 (𝑆, 𝐼∗)

𝐼∗𝑓 (𝑆, 𝐼)

+ ln
𝐼𝑓 (𝑆, 𝐼∗)

𝐼∗𝑓 (𝑆, 𝐼)
) + 𝑓 (𝑆∗, 𝐼∗) (

𝑓 (𝑆, 𝐼)

𝑓 (𝑆, 𝐼∗)
−

𝐼

𝐼∗

+
𝐼𝑓 (𝑆, 𝐼∗)

𝐼∗𝑓 (𝑆, 𝐼)
− 1) = 𝜇𝑆∗ (2 −

𝑆

𝑆∗
−

𝑆∗

𝑆
)

− 𝜂𝑒𝜇(𝜏1−𝜏2)𝐼∗H(
𝐼
𝜏
2

𝐼
) − 𝑓 (𝑆∗, 𝐼∗) [H(

𝑆∗

𝑆
)

+ H(
𝐼∗𝑓 (𝑆

𝜏
1

, 𝐼
𝜏
1

)

𝐼𝑓 (𝑆∗, 𝐼∗)
) + H(

𝐼𝑓 (𝑆, 𝐼∗)

𝐼∗𝑓 (𝑆, 𝐼)
)]

+ 𝑓 (𝑆∗, 𝐼∗) (1 −
𝑓 (𝑆, 𝐼∗)

𝑓 (𝑆, 𝐼)
) (

𝑓 (𝑆, 𝐼)

𝑓 (𝑆, 𝐼∗)
−

𝐼

𝐼∗
) .

(39)

We can show that𝑓(𝑆, 𝐼) is nondecreasing and concave down
with respect to 𝐼 since

𝜕𝑓 (𝑆, 𝐼)

𝜕𝐼
= (𝛽 − 𝛽

1

2𝑚𝐼 + 𝐼2

(𝑚 + 𝐼)2
) 𝑆 ≥ 0,

𝜕2𝑓 (𝑆, 𝐼)

𝜕𝐼2
= −

2𝛽
1
𝑚2𝑆

(𝑚 + 𝐼)3
≤ 0,

(40)

which ensure that

(1 −
𝑓 (𝑆, 𝐼∗)

𝑓 (𝑆, 𝐼)
) (

𝑓 (𝑆, 𝐼)

𝑓 (𝑆, 𝐼∗)
−

𝐼

𝐼∗
) ≤ 0. (41)

From the properties ofH(𝑥), one deduces that 𝑑𝑉(𝑡)/𝑑𝑡 ≤ 0,
and the strict equality holds if and only if 𝑆 = 𝑆∗, 𝐼 =
𝐼∗, and 𝑆

𝜏
1

= 𝑆∗, 𝐼
𝜏
1

= 𝐼∗. It follows from Theorem 5.3.1
in [25] that the solutions of system (33) converge to 𝜛, the
maximal invariant set in {𝑑𝑉(𝑡)/𝑑𝑡 = 0}. Accordingly, we
obtain 𝜛 = (𝑆∗, 𝐼∗). LaSalle’s invariance principle for delay
differential systems (see, e.g., [26]) indicates that 𝜀∗ is globally
asymptotically stable in

∘

Π. The proof is completed.

Proof of Theorem 8. Let (𝑆, 𝐸, 𝐼, 𝑅) be a positive solution
of model (4) with initial conditions (5) and (6). Applying
Lemma 9, one derives that 𝑆, 𝑆

𝜏
1

→ 𝑆∗ and 𝐼, 𝐼
𝜏
1

→ 𝐼∗,
as 𝑡 → +∞ if R

0
> 1. By L’Hospital’s rule, it follows from

the second and the fourth equations of (3) that

lim
𝑡→+∞

𝐸 = lim
𝑡→+∞

∫
𝑡

𝑡−𝜏
1

𝑒−𝜇(𝑡−𝑠)𝑓 (𝑆 (𝑠) , 𝐼 (𝑠)) 𝑑𝑠

=
1

𝜇
lim
𝑡→+∞

(𝑓 (𝑆, 𝐼) − 𝑒−𝜇𝜏1𝑓 (𝑆
𝜏
1

, 𝐼
𝜏
1

))

=
(1 − 𝑒−𝜇𝜏1)

𝜇
𝑓 (𝑆∗, 𝐼∗) = 𝐸∗,

lim
𝑡→+∞

𝑅 = lim
𝑡→+∞

𝜂 ∫
𝑡

𝑡−𝜏
2

𝑒−𝜇(𝑡−𝑠)𝐼 (𝑠) 𝑑𝑠

=
𝜂

𝜇
lim
𝑡→+∞

(𝐼 − 𝑒−𝜇𝜏2𝐼
𝜏
2

) =
𝜂 (1 − 𝑒−𝜇𝜏2)

𝜇
𝐼∗

= 𝑅∗.

(42)

The fact that 𝐸∗ is local stable when it exists, implies that it is
also globally asymptotically stable in

∘

Ω if R
0

> 1. We finish
the proof.

5. Concluding Remarks

In this paper, we propose SEIR epidemic model with media
impact, which incorporates latent and relapse delays. One
focuses on analyzing the permanence and global stability of
model (4). In detail, we show that (4) is permanent when
R
0

> 1. Based on the permanence obtained, we carry out
global stability analysis of the equilibria by proper Lyapunov
functionals. It is found that (4) is still a threshold dynamical
system.
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Figure 1: The DFE 𝐸
0
of model (4) is globally asymptotically

stable for different initiate conditions when R
0

= 0.0077,
where we take (𝐴, 𝜇, 𝜂, 𝜏

1
, 𝜏
2
, 𝛽, 𝛽
1
, 𝑚) = (1/7300, 1/7300, 0, 3.5, 4,

27, 0.0001, 0.00005, 10).

Now several numerical simulations are demonstrated to
check Theorems 7 and 8. For the purpose of controlling the
spread of genital HSV-2, for instance, we implement media
propaganda and education. Choose 𝐴 = 𝜇 = 1/7300, ] = 0,
𝜂 = 3.5, and 𝜏

2
= 27, as used in Blower et al. [27]. Since

the average incubation period after the genital acquisition
of HSV-2 is approximately 4 days (range, 2 to 12 days) [9],
we may take 𝜏

1
= 4. When 𝛽 = 0.0001, 𝛽

1
= 0.00005,

and 𝑚 = 10, we then get that R
0

= 0.0077. Figure 1
shows us that the disease-free equilibrium𝐸

0
of (4) is globally

asymptotically stable for two different initiate conditions
(𝑆(0), 𝐸(0), 𝐼(0), 𝑅(0)) = (0.69, 0.05, 0.3, 0.05) (green line)
and (𝑆(0), 𝐸(0), 𝐼(0), 𝑅(0)) = (0.8, 0.05, 0.01, 0.05) (blue line).
And, given that 𝛽 = 0.02, 𝛽

1
= 0.01, and 𝑚 = 10,

direct calculation gives R
0

= 1.5308. From Theorem 8 one
knows that the unique endemic equilibrium 𝐸∗ is globally
asymptotically stable as shown in Figure 2 for the different
initiate conditions used in Figure 1. We observe that there
is no sustained oscillatory solution and thus media control
and the two delays do not have fundamental influence on the
qualitative behaviors of model (4).

Additionally, since 𝑑R
0
/𝑑𝜏
1

< 0 and 𝑑R
0
/𝑑𝜏
2

< 0, it
is an advantage for controlling the disease spread to increase
both latent and relapse delays. In practice, the latent period
may be hard to change, but the likelihood of symptomatic
recurrence [14] and the frequency of subclinical (asymp-
tomatic) viral shedding [13] can be substantially reduced
under suppressive therapy rather than episodic treatment,
such that the relapse period (delay) can be lengthened.

Note that media education does not change the basic
reproduction number R

0
[4]. However, the greater the

reactive velocity of media coverage and individuals (i.e.,
the smaller the value of 𝑚), the endemic level 𝐼∗ will be
controlled to a much lower level, seeing the blue lines shown
in Figure 3 (where we change the values of 𝑚 and 𝛽

1
but

keep the same initiate condition (𝑆(0), 𝐸(0), 𝐼(0), 𝑅(0)) =
(0.8, 0.05, 0.01, 0.05) and the reminding parameters values
are the same with Figure 2). On the contrary, if media

I

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4
Time (days) ×104

Figure 2: The EE 𝐸∗ of model (4) is globally asymptotically stable
when R

0
= 1.5308, where 𝛽 = 0.02, 𝛽

1
= 0.01, and initiate

conditions and the reminding parameters values are kept the same
as Figure 1.

I

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m = 10

m = 0.1

0 1 2 3 4
Time (days) ×104

𝛽1 = 0.01

𝛽1 = 0

Figure 3:The impact of media on the genital HSV-2 under the same
initiate condition (𝑆(0), 𝐸(0), 𝐼(0), 𝑅(0)) = (0.8, 0.05, 0.01, 0.05)
except for the values of 𝑚 and 𝛽

1
.

departments and the public do not respond timely to the
epidemic, the effect of media propaganda on the disease
transmission is almost the same with the case with no media
impact (i.e., 𝛽

1
= 0, seeing the red line in Figure 3). Hence,

timely response of media coverage and individuals plays a
more key role in controlling the epidemic.
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